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SHOCK-TUBE FLOW ANALYSIS WITH A DIMENSIONLESS 

VELOCITY NUMBER 

By N. Muniswamy R e d d p  

Ames Research Center 

SUMMARY 

The c l a s s i c a l  shock-tube equation, f o r  a constant-area shock tube, i s  
rederived i n  terms of a dimensionless veloci ty .  The equation reduces t o  a 
universal  form so that a s ingle  graphical p lo t  gives the  solution of the  shock- 
tube equation f o r  a l l  combinations of pressures and temperatures i n  the dr iver  * 
Real-gas e f f e c t s  behind the  shock wave a r e  included i n  the solution, but the  
dr iver  gas i s  assumed t o  be perfect  with a constant r a t i o  of spec i f ic  heats .  
Specif ic  solut ions f o r  perfect  and real  driven gases a re  discussed. A l l  the  
thermodynamic quant i t ies  behind the  unsteady ra refac t ion  wave, r a t i o s  across 
the  contact surface, wave diagram parameters and t e s t i n g  t i m e  i n  a shock tube 
a re  expressed i n  terms of  the  dimensionless velocity.  Twin  t a i l o r i n g  constants 
a r e  obtained from the  universal  shock-tube equation, one giving the t a i lo r ing  
Mach number and the other  giving the loading pressure r a t i o  and speed-of-sound 
r a t i o  ( i n  the  driver-driven tubes) required t o  achieve the t a i l o r i n g  Mach num- 
ber .  Conditions f o r  matching the thermodynamic quant i t ies  across the  contact 
surface are given, i n  terms of the  dimensionless velocity,  and t h e i r  s i g n i f i -  
cance i n  shock-tube performance i s  discussed. 

0 4 '  INTRODUCTION 
T i  - 

L4 

The problem of  predict ing the 
s t rength of t he  shock wave produced by 
instantaneously opening the  diaphragm 
that separates a high and low pressure 
region has been considered extensively 
i n  reference 1. By using the  condi- 
t ions  of equal pressure and equal 
veloci ty  across  the contact surface 
( C  i n  f i g .  1) , one can derive an 
equation f o r  t he  pressure r a t i o  (P21) 
across the moving shock i n  terms of 
known quant i t ies1 P41, 8419 y 1 ,  

*This report  was prepared while the  author was a National Academy of 
Sciences' Resident Research Associate a t  the Ames Research Center. 
i s  now a t  Aerospace Research Laboratories, Ohio S ta te  University Research 
Foundation, Columbus, Ohio. 

a l l  parameters a re  given i n  the Notation i n  the  appendix. 
( 3 ) ,  and (4) are  iden t i f i ed  i n  f igure  1. 

Figure 1.- Wave system i n  an ideal shock tube. 

D r .  Reddy 

'The notation used here i s  the  same as i n  reference 1; def in i t ions  of  
Regions (1) , ( 2 ) ,  



and 74. For example, t he  equation derived i n  reference I, f o r  a per fec t  
d r iver  and driven gas combination, i n  a constant-area shock tube, i s  

To evaluate PZ1 from equation (1) a graphical p l o t  i s  necessary, s ince P21 
i s  an impl ic i t  function of known quan t i t i e s .  Therefore, many graphical p l o t s  
are given i n  reference 1 f o r  various combinations of speed of sound and 
spec i f i c  heat r a t i o .  
a41, P41, and y41 
problem becomes aggravated i n  combustion driven and e l e c t r i c  a r c  heated shock 
tubes because d i f f e ren t  e f f ec t ive  values of a4, P4, and 74 a re  obtained f o r  
each d i f f e ren t  run condition. Furthermore, consideration of real-gas effects 
( r e f .  2) on the  performance of t he  shock tube requires  a separate  graphical 
in te rpola t ion  f o r  each case. I n  addi t ion,  a l l  o ther  thermodynamic quan t i t i e s  
i n  region (3) depend not only on the  shock Mach number but a l so  on 
y 4 .  
region i s  needed (ref.  1). 

However, i f  a so lu t ion  f o r  a spec i f i c  combination of 
i s  desired,  a new graphical p l o t  must be generated. This 

a4 and 
Hence, a la rge  s e r i e s  of curves f o r  thermodynamic quan t i t i e s  i n  t h i s  

H a l l  and Russo ( r e f s .  3 and 4) recognized t h a t  equation (1) could be 
expressed i n  terms of two normalized parameters such t h a t  the func t iona l  r e l a -  
t i o n  between them i s  weakly dependent on j u s t  t he  quantity Their work 
was l imited t o  an i d e a l  gas i n  both the  dr iver  and driven tubes. It i s  t h e  
purpose of t h i s  repor t  t o  show t h a t  the shock-tube equation can be expressed 
i n  terms of a s l i g h t l y  d i f f e ren t  s e t  of dimensionless numbers t h a t  permits one 
t o  include the  e f f e c t s  of real  driven gas, and moreover t h a t  permits a l l  the  
flow quan t i t i e s  i n  d i f f e ren t  regions i n  the shock tube t o  be reduced t o  rela- 
t i v e l y  simple functions of one dimensionless ve loc i ty  number. 
then, the  work of H a l l  and Russo i s  generalized and extended here, although 
t h e  present repor t  pe r t a ins  only t o  an a rea  r a t i o  of un i ty  between dr iver  and 
driven chambers, while t h e i r s  includes the  e f f e c t  of d i f f e r e n t  area r a t i o s  i n  
an ideal-gas ana lys i s .  

y e .  

I n  a sense, 

I n  the  present ana lys i s ,  w e  reder ive the  shock-tube equation i n  such a 
form t h a t  a s ing le  graphical p l o t  gives t h e  so lu t ion  f o r  a l l  combinations of 
Pel and 841. Furthermore, no assumption as t o  the thermodynamic s t a t e  of t he  
gas behind t h e  shock wave (region ( 2 ) )  i s  made i n  deriving t h i s  un iversa l  
shock-tube equation, so t h a t  it also gives t h e  so lu t ion  f o r  a r e a l  gas behind 
the  shock wave. Spec i f ic  ways of obtaining the  shock Mach numbers for a per- 
f e c t  and r e a l  gas are discussed. I n  each case, the  dr iver  gas i s  t r ea t ed  as 
a per fec t  gas. However, an e f f ec t ive  y 4  can be chosen t o  account f o r  some 
of t he  real-gas  e f f e c t s  i n  t h e  dr iver .  

The following aspects  of shock-tube flow a r e  a l so  discussed i n  terms of 
t he  new dimensionless veloci ty  number: 

(1) Functional dependence of a l l  thermodynamic quan t i t i e s  i n  regions (2) 
and (3) , and of t h e  wave diagram parameters 
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(2)  Testing time. 

(3) Tailored operation.2 The universal  shock-tube equation gives t w i n  
universal  t a i l o r i n g  constants.  

(4) Significance of matching the  contact surf ace temperature. 

THE SHOCK-TUBE EQUATION 

I n  a shock tube, the  unsteady ra refac t ion  wave t h a t  t r ave l s  i n to  the 
dr iver  converts the pressure and thermal energy in to  k i n e t i c  energy, and 
large p a r t i c l e  ve loc i t ies  resu l t  behind the  ra refac t ion  wave (region (3 ) ) .  
The normal shock wave t rave l ing  in to  the  driven gas a l so  creates  large p a r t i -  
c l e  ve loc i t ies  i n  region (2) and these must match the  veloci ty  a t  the  contact 
surface with region (3 ) .  A general expression for this veloci ty ,  f o r  perfect  
d r iver  gas, i s  the well-known re l a t ion  (ref.  1) 

where the  pressure,  as wel l  as the veloci ty ,  has been matched a t  the contact 
surface (pp = p3). The m a x i m  veloci ty  (usual ly  ca l led  the  escape veloci ty)  
t h a t  can be achieved i n  region (3) i s  simply the  l i m i t  of equation (2) when 
p24 -* 0 

h 284 
u3 = 

Y 4  - 1 
W e  s h a l l  define a dimensionless veloci ty  

and i n  terms of t h i s  number, equation (2) becomes 

Now, according t o  conservation of mass and momentum across t h e  shock wave, 
the pressure and ve loc i ty  c a n b e  expressed i n  terms of  the  shock Mach num- 
be r  ME and the  densi ty  r a t i o  E = p,/p, 

(3) 

2Tailoring concept i s  defined elsewhere i n  t h i s  repor t .  
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U2 = (1 - €>US = (1 - E)alMs 

Equation (6) may be put i n  the  form 

p 2 1 =  Y1MZ (l - E + -.> 1 
Y p s  

and from equations (7), (31, and (4) 

o r  

Then the  shock-tube equation can be wr i t ten  

(1 - E + -f4 1 

Y ps2, 

(1 - E ) 2 p 4  

which when expanded i n  powers of  quant i t ies  less than uni ty  becomes 

If quant i t ies  t he  order of  P4c and P4/y Ms2 
unity,  which i s  a good approximation f o K  Mach numbers grea te r  than about 4, 
the  shock-tube equation becomes 

are neglected compared with 
1 
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where Sn i s  the dimensionless quant i ty  (yl/y4p4) (a4,4wi), which we 

s h a l l  c a l l  the  shock-tube number. When 
841 4 m. When Rn + 1, Sn --+ 0, o r  P41 Thus, a l l  possible shock Mach 
numbers a re  represented by Rn between 0 and 1. The approximation neglecting 
terms of order  
at very low Mach numbers; bu t  normally these a re  not t he  Mach numbers of 

Rn -, 0, Sn 4 m, or, i n  o ther  words, 

P4c, t h a t  was  used i n  deriving equation (12) becomes inva l id  

i n t e r e s t .  A plo t  of Sn vs. Rn i s  
necessary to  obtain Rn f o r  any given 
conditions, but a s ingle  universa l  
p lo t  ( f i g .  2) i s  su f f i c i en t  t o  solve 
the shock-tube equation f o r  a given 

74. 

I n  the der ivat ion of equa- 
t i o n  (12) no assumption has been made 
about the  thermodynamic s t a t e  of the  
driven gas behind the  shock wave 
(region ( 2 ) ) ,  but t he  dr iver  gas has 
been assumed t o  be per fec t .  
the value of Rn obtained from equa- 
t i o n  (12) i s  unique i n  the sense t h a t  
it i s  the  same i r respec t ive  of the  
thermodynamic s t a t e  of the  gas behind 
the  shock wave. 

Hence, 

SOLUTIONS OF Rn 

I I I I I 
.2 .4 .6 .e 1.0 Limiting Cases 10-4; 

Rn 

Figure 2.- V a r i a t i o n  of Sn VS. Rn. Perfect  driven gas. - Invoking 
ap2 = y1P2/P2 
of energy across the  shock wave, one 
obtains 

and using conservation 

1 - E =  Y, f 1 Q-&) 
Then, the r e l a t i o n  between Rn and Ms (eq.  (9)) becomes 

o r  

5 



Hence, t he  problem of finding Ms or P2 from the  shock-tube equation i s  
solved. 

Driven gas with i n f i n i t e  heat  capacity, E + O(yp -+ 1). - I n  t h i s  l i m i t  

2a4 1 
- 1  Ms = 

74 

Real Driven Gas 

The solution f o r  Ms i n  the case of a r e a l  driven gas ,ies between the 
preceding two l i m i t s .  The change i n  Ms between the  two l i m i t s  i s  

where (Ms*) corresponds to the  per fec t  gas case. 
due t o  real-gas e f f ec t s  i s  typ ica l ly  the order of 15 percent o r  l e s s .  
r e l a t i v e l y  small s i ze  of the e f f e c t  i s  due t o  the  f a c t  t h a t  t he  pressure and 
p a r t i c l e  veloci ty  behind a shock wave are  not s ign i f icant ly  affected by real- 
gas e f f ec t s .  The r e l a t ive ly  strong e f f ec t s  are l imited to temperature and 
density.  

Thus, the change i n  Ms 
The 

Exact solutions f o r  Ms can be obtained by making use of ex is t ing  
charts  of real-gas normal shock propert ies  (such as given i n  r e f .  5 ) ,  along 
with the  solution f o r  Rn obtained from our universal  curve ( f i g .  2) .  The 
value of Rn determines u2 from equation (4) and the  value of Ms can be 
determined from a p lo t  of u2 vs .  M, f o r  a given PI. 

THE SHOCK-TUBE NUMBER S, 

The parameter Sn i n  equation (12) i s  a function of the  two important 
parameters 841  and P41 i n  a shock tube. Note t h a t  t h e  diaphragm pressure 
r a t i o  P41 has far less e f f ec t  on the shock-tube number than the speed-of- 
sound r a t i o  a41, since Sn varies as the  square root of the pressure r a t i o  
but  as the f i r s t  power of t h e  sound-speed r a t i o .  This point has been d i s -  
cussed i n  reference I, but it becomes immediately evident with the  present 
universal  form of the shock-tube equation (eq. (12 ) ) .  
Sn i s  a r a t i o  of two l imit ing shock Mach numbers, 

It can be shown t h a t  

6 



where 

I n  addition, so long as t h e  gases i n  both regions (1) and (4) obey the  per- 
f e c t  gas l aw,  it follows from the  def in i t ion  of Sn t h a t  

(18) 

Thus, the  fundamental parameters i n  the  analysis  of shock-tube flow are  the  
density r a t i o  across the  diaphragm p (eq. (18)) and the  r a t i o  of  shock 

veloci ty  t o  speed of sound i n  the dr iver  gas Us/aB (eq. (9) ) . 
bas ic  quant i t ies  represented by our dimensionless nmbers  Sn and Rn, and 
these bas i ca l ly  determine the  complete shock-tube performance. 

14 
These a re  the  

It i s  in t e re s t ing  t o  compare these r e s u l t s  with those of reference 3. 
The number Sn i s  e s sen t i a l ly  the same as  Hall  and RUSSO'S F14, the  r e l a t ion  
between them being 

2 
sn = Y 4 - 1 E  

I n  the idea l  gas t h i s  i s  simply proportional t o  the square root of the  i n i t i a l  
density r a t i o  across the diaphragm, as Hal l  and Russo have pointed out The 
dimensionless velocity Rn i s  somewhat d i f fe ren t  from Hall  and Russo's param- 
e t e r  Ms/&, however, even f o r  an i d e a l  gas: 

It i s  t h i s  difference t h a t  permits us  t o  extend the analysis  t o  nonideal 
driven gases and t o  derive simple expressions for a l l  the shock-tube proper- 
t i e s  i n  terms of Rn. Thus, it appears t h a t  the parameter Rn i s  more useful  
i n  the shock-tube flow analysis  than other  dimensionless combinations. 

ACCURACY OF SHOCK-TUBE EQUATION (EQ. (12) ) 

and smaller 

The error between the exact analysis  (eq. (1)) f o r  a perfect  
P q E  

I n  the  derivation of equation (12), terms of  the  order 

were neglected. 

7 
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Figwe 4.- Variation of P34 and T34 with k. 

gas and the  universal solut ion 
(eq. (12))  was  computed a t  d i f f e ren t  
shock Mach numbers and i s  shown i n  
f igu re  3.  
cent at Ms = 3 and reduces t o  0.5 
and 0.25 percent at  Ms = 8 and 15, 
respect ively,  regardless of the  value 
of p4. The magnitude of e r r o r  will 
be  s t i l l  less f o r  a real  gas because 
E i s  smaller i n  t h i s  case than f o r  
the  i d e a l  gas. 

The e r ro r  i s  about 4.5 per- 

SHOCK-TUBE FLOW QUAPITITLES WITH Rn 

Behind the  Unsteady Rarefaction Wave 

For a per fec t  d r iver  gas 
(driven gas state a rb i t r a ry )  the  f o l -  
lowing thermodynamic quant i t ies  i n  
region (3) can be expressed i n  terms 
O f  Rne3 

T34 and P34 are p lo t ted  i n  f igure  4'. 
It can be seen t h a t  the  e f f ec t  of y, i s  not very imwrtant as far as these 
quant i t ies  are concerned. 

Across the  Contact Surface 

The r a t i o s  of thermodynamic quan- 
t i t i e s  across the  contact surface f o r  

3The basic  expressions for these quant i t ies  were taken from reference 1. 
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perfect  dr iver  and driven gases with Ms2 >> 1 are  given below with only R, 
as  the variable:  

2 

E32 = P4(' inRn) 

yl= 1.67 (TAILORING POINT) 

?= 1.4 (TAILORING POINT1 

I I 
I 

10-3 I I ,  
0 .2 .4 .6 .a I .o 

R n  

Figure 5.- Variation of E32 with R,. 

The i n t e r n a l  energy r a t i o  ES2, which 
i s  important i n  t a i l o r i n g  i s  p lo t ted  
i n  f igure  5. I n  t h i s  case, the value 
of y4 has a small but  noticeable 
e f f ec t  . 

Shock-Tube Wave Diagram Parameters 

Speed of the t a i l  of rarefact ion - wave. - For a perfect  dr iver  gas and 
with a r b i t r a r y  driven gas thermodynam- 
i c s ,  the  veloci ty  of  the t a i l  of  the 
rarefact ion wave i s  given as 

I f  Rn = l/a4 the veloci ty  of the t a i l  
of the unsteady rarefact ion wave 
becomes zero and hence the  rarefact ion 

9 



wave remains ins ide  the  dr iver  f o r  a l l  times. 
number i s  

The corresponding shock-tube 

Equation (29) gives the  r e l a t ion  between 
wave always ins ide  the  dr iver .  

a4 and P4 t o  keep the  ra refac t ion  

T ~ ,  Xc, T ~ ,  and Xs.- Using t h e  bas ic  equations i n  reference 1, we 
express the  quan t i t i e s  T ~ ,  Xc,  T ~ ,  and XS (which are defined i n  f i g .  1) i n  
terms of Rn: 

104 

I 03 

XvTc  

IO2 

10 

I 

I I I 

I I  
I 
I 

/ 
/ 

I 

6 

! I I I 

.2 .4 .6 .8 
R. 

Figure 6.- Variation of rC and. X, with Rn. 

Per fec t  d r iver  gas assumption 

Per fec t  d r iver  and driven gases 
(Ms2 >> 1) 

These quan t i t i e s  are p lo t t ed  i n  f i g -  
u re s  6 ,  7, and 8 ,  f o r  various combina- 
t i ons  of y and y,. 

4 
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Figure 8.- Variation of X, with Rn. 

Testing Time i n  a Shock Tube 

Testing time At  i n  a shock tube i s  defined as the t i m e  elapsed between 
the  arrival of the shock wave and contact surface at a given s t a t ion  along 
the driven tube. Using the  r e l a t i o n  between u2 and US (eq. ( 7 ) ) ,  one can 
express A t  . i n  terms of Rn as 

where xt i s  the t e s t i n g  s t a t ion  along the shock tube. Once R, i s  obtained 
from the universal  p l o t  ( f i g .  2 ) ,  A t  i s  known. It should be noted t h a t  A t  
becomes very small for a r e a l  gas since E + 0, especial ly  at high shock Mach 
numbers. The location for maximum t e s t i n g  time from f igure  1 should be equal 
t o  X,. Then, using equations (9) and (3l), we have 

(AT)= = (TC - TI) = ETc 

where 
(35) 
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TAILOFiID OPERATION I N  A SHOCK TUBE 

If the  re f lec ted  wave a f t e r  t h e  in te rac t ion  of a shock wave with a con- 
t a c t  surface i s  a Mach wave, then t h e  contact surface i s  t a i lo red  ( r e f s .  1 
and 6)  
e a s i l y  be derived f o r  the  perfect  dr iver  and driven gas case (refs. 1 and 6 ) .  

For t a i l o red  operation, a condition of t h e  type given below can 

and 

f o r  

According t o  equation (23) f o r  E32, t he  t a i l o r i n g  constant i s  given by 

I n  terms of Ms, 

I n  addition, the shock-tube constant f o r  t a i l o r i n g  i s  (from eq. (12)) 

The twin t a i lo r ing  conditions (eqs. (38) and (40))  can be represented by a 
unique point  on the universal  p l o t  of t h e  shock-tube equation as shown i n  f i g -  
ure 2. The basic  condition f o r  t a i l o r i n g  i s  given by Sn. This gives an 
e x p l i c i t  r e l a t ion  between 8 4 1  and P4l  f o r  t a i l o r i n g  which has been made pos- 
s i b l e  by the  universal  form of t he  shock-tube equation. 

12 



COPJIACT SURFACE MATCHING 

I n  t h e  t a i lo red  operation the  contact surface i s  not t o t a l l y  matched i n  
the  sense t h a t  nei ther  i n t e r n a l  energy nor any of t he  other  thermodynamic 
quant i t ies  (except P and u)  are equated across the  contact surface. 

(1) For a t a i lo red  operation (E32 = a41) 

If  acoustic impedance ( p a ) ,  density, and temperature have t o  be matched across 
t h e  contact surface,  t he  following conditions i n  terms of temperature ratio 
must be sa t i s f i ed .  

( 2 )  For acoustic impedance matching (pa32 = 1) 

T32 = ’4 1’4 1 

(3) For density matching ( ~ 3 2  = 1) 

T32 = ’4 1 

(4) For temperature matching (T32 = 1) 

T32 = 1 

(43) 

(44) 

It i s  in t e re s t ing  that 

Thus, i n  a t a i lo red  operation, density and acoustic impedance across the  con- 
t a c t  surface a re  nearly matched but not t he  temperature r a t i o .  

For contact surface temperature matching (T3 = T2) t h e  dirpensionless 
number Rn should be,  according t o  equation (24), 



The corresponding shock-tube nmber i s  
1 - 

4p 4 ( p 14 

It should be noted t h a t  
depend on the  molecular weights, but  Rn and Sn f o r  contact surface 
temperature matching do. 

Rn and Sn f o r  t a i l o r i n g  (eqs. (38) and (40)) do not 

For simultaneous t a i l o r i n g  and temperature matching 

hence, 

Then (S,)T becomes equal t o  (Sn)TM. 

Even €or d i f f e ren t  y combinations a4/6 i s  not very d i f f e ren t  from 
uni ty;  hence p i4  (molecular weight r a t i o )  should be nearly equal t o  uni ty  
f o r  simultaneous t a i l o r i n g  and temperature matching. 

It i s  wel l  recognized t h a t  i n  a shock-tube operation, contact surface 
mixing s igni f icant ly  reduces the  t e s t i n g  t i m e ,  pa r t i cu la r ly  at  high shock 
Mach numbers. This mixing i s  probably due to unequal temperature and density 
across t h e  contact surface. Thus, it i s  worthwhile t o  match the  thermody- 
namic quant i t ies  across the  contact surface. This requires ,  according to t h e  
preceding discussion, t h a t  dr iver  and driven gas molecular weights be nearly 
equal e 

CONCLUDING REMIw(s 

The problem considered i s  t h a t  of predict ing the  s t rength of a shock 
wave produced when the  diaphragm i n  a shock tube i s  opened. Without making 
any assumptions as to the  thermodynamic state of gas behind t h e  shock wave, 
but  assuming t h a t  t he  dr iver  gas behaves as per fec t  gas, we rederive the  
shock-tube equation i n  terms o€ two new dimensionless numbers. The equation 
reduces t o  a universal form so t h a t  a s ingle  graphical p lo t  suf f ices  f o r  a l l  
combinations of i n i t i a l  conditions e The f indmen ta l  parameters t h a t  inf lu-  
ence t h e  performance of a shock tube are  the  densi ty  r a t i o  across the  
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diaphragm, the shock veloci ty ,  and the  speed of sound i n  the  driver gas. 
All t he  flow parameters i n  a shock tube can be expressed i n  terms of these 
dimensionless numbers for a l l  possible shock Mach numbers. The present 
universal  shock-tube equation provides twin universal  t a i l o r i n g  constants 
and puts t he  t a i l o r i n g  operation of a shock tube i n  c l ea r  perspective. It i s  
hoped t h a t  the  present analysis  will enhance t h e  understanding of the  ro l e  of 
many var iables  i n  a shock-tube f l o w .  

Ames Research Center 
na t iona l  Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f .  94035, Feb. 3, 1969 



APPENDIX 

NOTATION 

a 

E 

MS 

P 

Rn 

Sn 

US 

U 

ur 

P 

P 

A t  

Y 

E 

a 

P 

6 

* j k  

speed of sound 

i n t e r n a l  energy 

shock Mach number, - 
a1 
US 

pressure 

dimensionless veloci ty  (defined i n  eq. (12) ) 

dimensionless shock-tube nmber (eq. (12) ) 

shock ve loc i ty  

p a r t i c l e  veloci ty  

speed of the  t a i l  of ra refac t ion  wave 

density 

mo lecu lar weight 

t e s t i n g  t i m e  i n  shock tube 

r a t i o  of specif i c  heats 

P -.L 
P 2  

(densi ty  r a t i o  across t h e  shock wave) 

yfl 
Y - 1  

y-l 
2Y 

Y1 + 1 
y * 
J r -  
'JIk 

- 1  

(unless otherwise defined) 

Regions (1) , ( 2 ) ,  (3), and (4) are iden t i f i ed  i n  f igure  1. 

Subscripts 1, 2, 3, and 4 r e fe r  to regions (11, (21, (31, and (4) as 
iden t i f i ed  i n  f igure  1. 

16 



REFERENCES 

1. Glass, I. I . ;  and Hal l ,  J.  G . ,  eds.:  Handbook OS Supersonic Aerodynamics. 
Sec. 18, Shock Tubes. NAVORD Rept. 1488, vol. 6, Dee. 1959. 

2, Bird, G. A. :  Some Methods of Evaluating Imperfect Gas Effects  i n  Aero- 
dynamic Problems - RAE-TN-Aero e 2488 Royal Aircraft Establishment, 
Farnborough, Hant s , England, Jan. 1957. 

3. H a l l ,  J. G.; and Russo, A. L e :  Simplification of the  Shock-Tube Equation. 
AIAA J. vole  1, Apr i l  1963, pp. 962-963. 

4. H a l l ,  J. G.; Lordi, J. A.; Fetz ,  B. A . ;  Stoddard, F.; and Bartz, J , :  
ARL 65-204, Aerospace Research on Advanced Gasdynamic F a c i l i t i e s .  

Research Laboratories, Oct. 1965. 

5. Lewis, C.  H.; and Burgess, E. C . ,  111: Charts of Normal Shock Wave 
Properties i n  Imperfect Nitrogen. 
Center, Tennessee, May 1964. 

AEDC-TDR-64-104, Arnold Engr. Dev. 

6. Flagg, R. F. : Detailed Analysis of  Shock Tube Tailored Conditions. 
RAD-TM-63-64, AVCO Corp., Wilmington, Massachusetts, Sept. 1963. 

NASA-Langley, 1969 - 11 A -3208 



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON, D. C.  20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 

POSTAGE AND FEES PAID 
NATIONAL AERONAUTICS AI 

SPACE ADMINISTRATION 

POSTMASTER: If Undeliverable (Section 151 
Postal Manual) Do Not Rem 

“The  aeronauticul and space activities of the United States shall be 
condzicted so as t o  contribute . . . t o  the expansioia of human  knowl- 
edge of phenomena in the atiiiorphere and space. T h e  Adnzinistration 
shall provide for the  widest practicable and appropriate disseminatioiz 
of inforiitation concerning its actizlities und the  resdts  thereof.” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion. or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS : Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


